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Abstract
We study tagged particle dynamics in a one-component simple liquid
characterized by the Lennard-Jones (LJ) interaction potential. Extended mode
coupling theory is used to obtain the correlation function which feeds back on
the dynamics of the self-correlations. The cooperative dynamical effects are
studied by evaluating various properties of tagged particle motion as influenced
by the collective dynamics. Comparison between the results obtained for
particles with purely repulsive interactions like the truncated LJ potential (or
the hard-sphere interaction) and that of the full LJ potential are shown. The
nature of the velocity autocorrelation function and the non-Gaussian variation
of the van Hove self-correlation function is specifically highlighted here. The
role of static structural input in the theory is considered especially in this regard.

1. Introduction

The non-exponential relaxation of the equilibrium time correlation functions in a supercooled
liquid has been extensively studied using both the experimental [1, 2] and computer simulation
techniques [3–6]. Many features of the tagged particle dynamics and associated dynamical
heterogeneities have been measured in these studies, the major emphasis being to understand
the basic mechanisms that govern the non-exponential nature of relaxation. Within a theoretical
framework, the present authors [7] presented a comprehensive study of the different dynamical
features of tagged particle motion that indicate the presence of dynamical heterogeneities in
computer simulation studies [5, 6]. This was done using self-consistent mode coupling theory
for a one-componenthard-sphere (HS) system governed by Newtonian dynamics. Such studies
have also been done for HS systems evolving via Brownian dynamics [8]. Thus, the theoretical
tools to measure these properties have been applied mainly to systems characterized by an HS
interaction potential. A step closer to real systems are those models involving attractive forces.
The Lennard-Jones (LJ) 6–12 potential is the most widely studied example in this context. This
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pair potential is represented as u(r) = 4ε[( σr )
12 − ( σr )

6]. The u(r) has a steep short-range
repulsive part and a longer-range attractive part. Here ε refers to the depth of the potential and
σ is a measure of particle size. At high temperatures, the attractive part of u(r) becomes almost
insignificant but it plays an important role in determining the dynamics at lower temperatures.
Here we consider a one-component LJ liquid in studying the role of attractive interactions in
determining the nature of correlated dynamics while the system is in a supercooled state.

The self part of the van Hove correlation function Gs(r, t), is a measure of the conditional
probability of locating the tagged particle at a distance r from its original position in a time
interval t . The Gs(r, t) has a simple Gaussian variation [9] in both the limits of t → 0,
where free particle dynamics dominate, and in the very long-time diffusive regime. The effect
of cooperative dynamics in the liquids is most evident for intermediate timescales where the
Gs(r, t) no longer shows a Gaussian spatial variation. The non-Gaussian parameter α2(t) is
the first-order correction to the Gaussian variation that is reflected in the corresponding Fourier
transform of Gs(r, t), given by ψs(q, t). The α2(t), defined as [9, 10]

α2(t) = 3

5

〈r4(t)〉
〈r2(t)〉2

− 1, (1)

quantifies the effects of correlated dynamics. Its variation over the different timescales reflects
the various stages of cooperative relaxation. In equation (1) 〈r2(t)〉 and 〈r4(t)〉 are the second-
and fourth-order moments of Gs(r, t), where 〈r2(t)〉 denotes the mean square displacement of
the tagged particle in time t . We evaluate these moments and hence the α2(t) by calculating
the self-correlation function [7]. The dynamics of a single particle in a dense fluid is invariably
determined by the correlated motions of the surrounding particles in the system. The tagged
particle correlation is obtained using the self-consistent mode coupling theory (MCT) [11]. We
use the extended mode coupling model [12] in which the role of coupling between dominant
density fluctuations as well as that between current and density fluctuations is considered
for compressible liquids. The simple MCT model [13] results if such non-hydrodynamic
corrections as obtained by considering the non-linear current–density couplings are ignored in
the theory. This predicts that the correlations freeze beyond a critical point and an ergodic to
non-ergodic dynamic transition results.

The main focus of the present work is to study the qualitative changes incurred because of
the continuous and attractive nature of the interparticle potential. This is specifically studied
in properties like the non-Gaussian parameter, the mean square displacement, the velocity
autocorrelation function and the fraction of ‘mobile particles’ [5–7]. The static structural
properties for the full LJ potential are also evaluated here using a much improved technique
referred to as the Due–Haymet method [14]. In the next section we present the theoretical
framework used for the present study, and we also describe briefly the scheme for evaluation
of the static structure factor S(k). In section 3 the numerical results obtained are illustrated,
the implications of which are discussed in the concluding section.

2. The studied model

The self-consistent mode coupling theory (MCT) is based upon evaluating the normalized
density autocorrelation function ψ(q, t). The Laplace transform of ψ(q, t), defined as

ψ(q, z) = −i
∫ ∞

0
dt eiztψ(q, t), Im(z) > 0 (2)

is expressed in terms of the generalized memory function �R(q, z) as

ψ(q, z) = z + i�R(q, z)

z2 −�2
q + i�R(q, z)[z + iq2γ (q, z)]

(3)
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in the extended mode coupling model [12, 15]. Here �q corresponds to the microscopic
frequency�2

q = q2v2
0[S(q)]−1 for the liquid state dynamics. In this, v0 is the average thermal

speed of the particle, v2
0 = kB T/m, T being the temperature of the system and m the mass

of the particles. The cut-off function γ (q, z) is obtained in the above equation as a result of
the non-linear coupling between the current and density fluctuations and is responsible for
restoring ergodicity. We use here its expression obtained in the one-loop approximation [15]
which becomes exact in the hydrodynamic limit.

The generalized longitudinal viscosity �R(q, z) in equation (3) contains the bare and the
mode coupling part, expressed as �R(q, z) = �B(q) + �mc(q, z). The uncorrelated collisions
occurring during the short time are responsible for the bare contribution�B(q) to the viscosity.
The bare transport coefficients have been explicitly calculated for the HS systems in terms of
the particle diameter σHS and the Enskog collision time tE using kinetic theory models. This tE

is given by tE = √
βm/[4

√
πng(σH S)σ

2
H S], n being the average number density and g(σH S)

the radial distribution function at σH S. We approximate the bare contributions for the LJ system
by the corresponding expression for the HS system. For expressing the effective HS diameter
σH S in terms of σ in the LJ case, we use σH S as that distance where the first peak appears
in the corresponding radial distribution function g(r) [16]. This is utilized in expressing the
characteristic LJ timescale τL J = √

mσ 2/ε in terms of tE , as

τL J = 4
√
πT ∗n∗g(σH S)

[
σH S

σ

]2

tE . (4)

Here T ∗ is the reduced temperature defined as T ∗ = kB T/ε. We will use this to compare the
results in the case of HS and LJ systems in the next section. The inverse Laplace transform of
the mode-coupling contribution �mc(q, z) in equation (3) is given by [12, 15]

�mc(q, t) = nv2
0

2

∫
d�k
(2π)3

ψ(q, t)ψ(|�q − �k|, t)V (�q − �k, �k), (5)

where the vertex function is,

V (�q, �k) = S(k)S(k1)[(q̂ · �k)c(k)− q̂ · �k1c(|�q − �k|)]2, (6)

�k1 representing �q − �k. The input structural quantities like the static structure factor S(k) and
the Ornstein–Zernike direct correlation function c(k) in equation (6) are determined by the
interaction potential. This illustrates the role of the interaction potential in determining the
correlated effects of dynamics.

The tagged particle dynamics is evaluated in terms of the self-correlation function

ψs(q, t) = 〈ns(−q, 0)ns(q, t)〉, (7)

where tagged particle density ns(q, t) = e−i�q· �R(t). The self-consistent dynamical equation for
the Laplace transform of ψs(q, t) in the standard mode coupling model [11] is given as

ψs(q, z) = z + i�R
s (�q, z)

z2 − v2
0q2 + iz�R

s (�q, z)
. (8)

This is obtained [11] by considering the generalized fluctuating hydrodynamic equations for
the tagged particle motions. In this equation, the bare contribution to the memory function,
�s

B , is also approximated by the corresponding HS expression as discussed above in the case of
collective correlations. The mode coupling effects in the dynamical relaxation are described
by the quantity �s

mc(q, t) which is obtained as a coupling between the self and collective
correlations as [11]

�s
mc(q, t) = nv2

0

∫
d�k
(2π)3

Vs(�q − �k, �k)ψ(k, t)ψs (|�q − �k|, t) (9)
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with the vertex function

Vs(�q − �k, �k) = (q̂ · �k)2[c(k)]2S(k). (10)

To evaluate the non-Gaussian parameter α2(t) in this model, the ψs(q, t) is calculated in
the small-q range by expressing �mc

s (q, t) in a Taylor series expansion up to O(q2), such that
from equation (8) the ψs(q, t) is expressible as a cumulative expansion [9] up to O(q4). This
is evaluated for ten values of qσ in the range from 0.01 to 0.1, which is small enough for the
quantity 1

q2 [1 − ψs(q, t)] to have a linear variation with q2. The slope of this linear variation

is − 1
120 〈r4(t)〉 and the intercept 1

6 〈r2(t)〉 [9], from which the corresponding α2(t) is obtained
using equation (1). The details regarding the form of the coefficients in the Taylor expansion
of �mc

s etc will be published elsewhere.

2.1. Static structure factor

The information regarding the interaction potential u(r) of the system is implicitly used to
obtain the solution of the above dynamical equations through the static structure factor S(k)
and the direct correlation function c(k). To obtain these for the LJ potential we mainly follow
the scheme of Due and Haymet [14] which we briefly describe in this section.

In general, the Ornstein–Zernike equation [17] defines the relation between the direct
correlation function c(r12)between particles at a distance r12 = |�r1−�r2| and the total correlation
function h(r12) = g(r12)−1, where g(r) is the pair correlation function. This relation is given
as

h(r12) = c(r12) + n
∫

d�r3 c(r13)h(r32). (11)

For a spherically symmetric, pair-wise additive potential, these static correlation functions are
related to the interaction potential by the exact relation [17]

h(r) = exp[−βu(r) + h(r)− c(r) + B(r)] − 1. (12)

Here B(r) represents the sum of all bridge diagrams or the ‘bridge function’ for the potential
u(r). An appropriate approximation to this function B(r) in terms of either c(r) or h(r)
constitutes a closure to the above two equations which can then be solved to obtain the structural
properties.

In perturbation theories [18, 19], the LJ interaction potential is partitioned into
a reference potential u1(r) and a perturbation u2(r). This u2(r) is approximated in
the Due–Haymet scheme [14] as a density-dependent function

u2(r) = −4ε

(
σ

r

)6

exp

[−ε
n∗

(
σ

r

)6]
(13)

using a semi-phenomenological approach. This is used to define the function s(r) =
h(r)− c(r)− βu2(r), in terms of which the Bridge function is formulated as

B(r) ≈ B(s) = −s2

2
[
1 +

(
5s+11
7s+9

)
s
] . (14)

Using the above closure, the two equations (11) and (12) are solved iteratively to finally obtain
the relevant correlation functions and the corresponding Fourier transforms.
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3. Results

We illustrate here some features of tagged particle dynamics in case of a one-component LJ
liquid. We compare the dynamical features of the LJ liquid with systems governed by purely
repulsive interactions, in order to study the effects of attractive forces on the dynamics. For
this we consider (a) the HS system and (b) the system characterized by the so-called cut LJ
potential. The form for truncated LJ potential is taken such that purely repulsive part of full
LJ potential is considered and is formulated as,

u(r) =

 4ε

[(
σ

r

)12

−
(
σ

r

)6]
+ ε, r � r0

0, r > r0

(15)

truncated at r0 = 21/6σ where the full LJ potential shows the minimum of the potential well.
This form of the potential makes it most appropriate to compare between the dynamical features
of the full LJ system. For illustration of the form of the full LJ and cut LJ potential see the
inset of figure 3. To obtain the static structure factor for the truncated LJ potential, we have
computed the equivalent HS diameter [18] and used the Percus–Yevick solution with Verlet–
Weiss correction added [20] to obtain the structure factor for the corresponding HS system.
The effect of the static structural properties is significant here since these structural inputs to
the present theory are implicitly detrimental to the subsequent dynamical relaxation in dense
liquids.

In figure 1 we illustrate the variation of the S(k) with the wavevector kσ at the reduced
temperature T ∗ = 0.723 (T ∗ = kB T/ε) and density n∗ = 0.999 (n∗ = nσ 3), as obtained
by the Due–Haymet scheme [14] described in section 2.1. The S(k) for the same full LJ
potential, obtained by the standard WCA scheme [18, 19], is also shown in this figure as
the dashed curve for comparison. The corresponding comparison of the radial distribution
function g(r) is shown as the inset to this figure. The main differences in S(k) occur at the
shorter k values, i.e. larger length scales. The height of the first peak of the structure factor
(S(k)max ) is also larger for the S(k) obtained using the WCA technique. Due to this difference
in the heights of S(k)max , the ‘ideal transition’ that follows from the simple mode coupling
theory [13, 21] occurs at a lower temperature T ∗

c = 0.695 with this improved structure factor.
The reduction in the transition temperature is by about 20% from that obtained using the WCA
S(k) [22].

The dynamic properties are obtained here using both the extended mode coupling
theory [12] and the simple MCT model [13]. For the finite wavevector calculations, we rescale
γ by a factor δ which finally determines the α relaxation timescale. The simple version of the
MCT model [13] results if the cut-off function γ is ignored or equivalently if δ vanishes. This
involves fixing a relevant value of the scaling factor δ such that it determines the appropriate
α relaxation timescale as expected from computer simulation models.

3.1. Simple MCT results

Here we present the results evaluated using the simple mode coupling model, where the cut-
off function γ is ignored in equation (3). Using this model, we will describe here both the
short- and long-time dynamical features of the tagged particle motions. However, it should be
noted that the short-time features are unchanged using the extended model equations as well.

3.1.1. Non-Gaussian parameter. In figure 2, we specifically focus on the short-time
correlated dynamics that is indicated by the strong peak of α2(t) in the HS systems [7].
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Figure 1. Static structure factor S(k) at T ∗ = 0.723, n∗ = 0.999 for the LJ potential using the
Due–Haymet scheme. The dashed curve represents the S(k) evaluated using the WCA technique at
the same T ∗ and n∗. The inset shows the corresponding curves for the radial distribution function
g(r). Here k∗ = kσ and r∗ = r/σ .

We illustrate here the α2(t) for the full LJ system at temperature T ∗ = 0.723 and density
n∗ = 0.999, shown as the solid curve. We have fixed the upper limit of the wavevector
integrals as � = 50σ−1 with the wavevector grid size 0.1σ−1 here. The specification of � at
a relatively large value is important to obtain numerically consistent results in the short-time
regime. The dot dashed curve in figure 2 exhibits the α2(t) for the cut LJ system at temperature
T ∗ = 1.145 and density n∗ = 1.06. The HS results at n∗ = 1.05 are shown in the figure as
the double-dot dashed curve. We choose the corresponding density and temperature for the
two systems by matching the height of the first peak of respective S(k)’s with that obtained for
the full LJ system. For direct comparison between the three systems, we have illustrated these
results with the time rescaled with respect to time tE , as discussed in section 2. This figure
shows that the purely repulsive, discontinuous potential results in maximum heterogeneity at
the shorter times as compared with the other two cases. This difference is due to the much
faster decay of the S(k) for the full LJ system at the smaller length scales or equivalently
larger k values, as compared to that for the other two purely repulsive systems. This is despite
matching at the respective peaks of the structure factor for the three systems. The variation
of the structure at shorter length scales especially affects the shorter-time properties. Here we
would like to indicate that the free-particle behaviour of the tagged particle as expected from
the Newtonian dynamics is not observable in the mode coupling model due to the generalized
hydrodynamic nature of mode coupling equations. Thus the α2(t) instead of going to zero in
the limit t → 0, converges to a constant value −2/3 as can be obtained analytically from the
linearized equation for the tagged particle correlator.

In figure 3 we show the long-time behaviour of α2(t) corresponding to the LJ, HS and
the truncated LJ potential. We fix the thermodynamic parameters for the three systems by
matching the first peak of S(k). Using this criterion, the comparison is made w.r.t. the LJ
system at T ∗ = 1.10 and the cut LJ system at T ∗ = 1.60, both for the density n∗ = 0.999. The
corresponding results for the HS system are obtained at a density n∗ = 0.985. We have chosen
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Figure 2. Comparison of the non-Gaussian parameter α2(t) at short time for full LJ system
(solid curve) at T ∗ = 0.723, n∗ = 0.999 with the cut LJ system (dot dashed) at T ∗ = 1.145,
n∗ = 1.06 and the HS system at n = 1.05 (double-dot dashed curve). The α2(t) is plotted against
dimensionless time t ′ = t/tE (see text for tE ).

here a comparatively higher temperature range in order to evaluate the long-time features
within a computationally viable time span. We observe that the timescale of relaxation with
the purely repulsive potentials is larger than for the full LJ system. The peak height of α2(t)
is also largest for the HS system which is similarly observed for the short-time peak. These
results are obtained here by fixing � = 25.0σ−1. It appears that the large-time features for
the dynamics are less sensitive to the upper cut-off�. To evaluate the long-time dynamics we
thus choose a comparatively smaller value for � in this numerical calculation. In the inset of
this figure we illustrate the comparative nature of the interaction potentials. The solid curve
shows the full LJ potential and the dot dashed curve depicts the cut LJ potential.

3.1.2. Velocity autocorrelation function and Gs(r, t). Another significant difference observed
in the dynamical properties due to change in the structure concerns the velocity autocorrelation
functions ψv(t) for the three cases. We evaluate ψv(t) as [9]

ψv(t) = 1

6v2
0

d2

dt2
〈r2(t)〉. (16)

The negative-time tail ofψv(t) is a characteristic feature of dense liquid dynamics. It physically
illustrates the back-scattering effects typically produced due to the rattling motion of the
particle while being trapped in the cage formed by the surrounding particles. We show in
figure 4, that the discontinuous, repulsive nature of the HS potential results in a marked
oscillatory decay of ψv(t) as compared with its almost monotonically vanishing negative tail
in the LJ liquid. For the truncated LJ potential, theψv(t) also shows an oscillation, though with
a much smaller amplitude. The results shown here correspond to the same thermodynamic
parameters as used to obtain the short-time behaviour of α2(t) in figure 2.
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Figure 3. The comparison of the non-Gaussian parameter α2(t) at long times using the simple
MCT model for the full LJ system (solid curve), cut LJ potential (dot dashed curve) and the HS
system (double-dot dashed curve). These results are obtained with T ∗ = 1.10 (LJ), T ∗ = 1.60 (cut
LJ) at n∗ = 0.999 and at n∗ = 0.985 for the HS system. The inset shows the relative comparison
between the full LJ potential (solid curve) with the purely repulsive cut LJ potential (dot dashed
curve).

In figure 5 we illustrate the variation of the probability 4πr2Gs(r, t) with distance r
at time tp2, at which the non-Gaussian parameter shows its maximum in the later-time
regime (figure 3). This figure illustrates the non-Gaussian nature of the van Hove self-
correlation function on comparison with the corresponding Gaussian function G0

s (r, t), shown
as the dot dashed curve for both the cut LJ system (main figure) and the full LJ system
(as inset) for the same n∗ and T ∗ as used to obtain figure 3. The G0

s (r, t) is evaluated
as G0

s (r, t) = [3/(2π〈r2(t)〉)] 3
2 exp(−3r2/2〈r2(t)〉) at the corresponding time, using the

computed value of 〈r2(t)〉. The stretched variation of Gs(r, t) reflects the effects of correlated
dynamics in the supercooled liquid. The point marked by the arrow indicates the distance
beyond which the probability of locating the particle increases as compared with that predicted
by the simple Gaussian function. In the computer simulation studies of [5, 6], such particles
that cross this distance, denoted as rM , are referred to as ‘mobile particles’. In the present
calculation, we obtain almost the same value of rM as well as the corresponding fraction of
mobile particles [7] for both systems considered here.

3.2. Extended MCT results

The simple MCT model predicts the ‘ideal transition’, marking a transition from the ergodic to
a non-ergodic state at densities much smaller than that predicted by the computer simulation
results [23]. In the extended MCT, the role of cut-off functionγ (equation (3)) keeps the system
ergodic at all densities. However, as discussed in section 2 the expression for γ is obtained up
to one loop order that becomes exact only in the hydrodynamic limit. For the finite wavevector
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Figure 4. The velocity autocorrelation function ψv((t) versus t ′ for the LJ system (solid curve),
cut LJ system (dot dashed curve) and HS system (double-dot dashed curve) corresponding to the
same thermodynamic parameters as used for figure 2.
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Figure 5. 4πr2Gs(r, t) versus r∗ = r/σ for LJ liquid evaluated at at time tp2 using the simple
MCT model The dot dashed curves are the corresponding Gaussian distribution function G0

s (r, t).
The inset illustrates the results for the cut LJ system. These are obtained using the same T ∗ and
n∗ as used to obtain figure 3.

generalization we use an overall scaling factor of δ with γ . This δ is treated in the theory as
the single parameter to match the relaxation of the density autocorrelation function with the
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Figure 6. Non-Gaussian parameter α2(t) versus time t ′ = t/tE for the LJ liquid at T ∗ = 0.723,
n∗ = 0.999 in the long-time range using the extended MCT model. The HS result is shown in the
inset at density n∗ = 1.05.

computer simulation results. The tagged particle correlations are then evaluated using this
ψ(q, t) (equation (9)).

Here, we estimate δ for the LJ system such that the shear viscosity of the system computed
using the expression [24]

η = n2kB T

60π2

∫
dt

∫
dk k4[c′(k)]2S2(k)[ψ(k, t)]2 (17)

in the MCT agrees with the corresponding value reported in [25]. Here, c′(k) represents the
first-order k derivative of c(k). In [25], the transport properties of a dense one-component
LJ liquid were evaluated using a master equation approach to study the dynamics in the
configuration space with different minima in the potential energy landscape. The dynamics
are evaluated by ignoring the crystal minima due to which the usual problem of crystallization
encountered in molecular dynamics simulation of a one-component system is avoided. The
dynamics in the MCT is also formulated based on the analogous assumption that crystallization
does not take place. Hence, the results from such dynamical models [25] have a strong appeal
for being considered with MCT. Using this criterion of fixing δ, we obtain in figure 6 the α2(t)
in the longer-time relaxation regime at temperature T ∗ = 0.723 and density n∗ = 0.999 for
the LJ system.

For comparison, we have shown in the inset of figure 6 the time variation of the α2(t) for
the HS system at density 1.05. This density is chosen such that the respective peak value of the
structure factor S(k) is same in both the cases. In obtaining this result for HS with extended
MCT, the quantity δ for the final relaxation of the density correlation function is fixed such
that the self-diffusion coefficient calculated from the theory matches with that of the molecular
dynamics simulation results of [23] (as done in [7]). These results are shown for both systems
with respect to the time rescaled by the Enskog collision time tE . The heights of the respective
peaks in α2(t) are almost similar, with the HS fluid still showing a higher value, though the
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Figure 7. Variation of the mean square displacement 〈r2(t)〉 with time t ′ for the LJ system at
T ∗ = 0.723, n∗ = 0.999 using the extended MCT model.

timescale of occurrence in the LJ case is much larger than that for HS. This is presumably
due to the fixing of the cut-off parameter δ, determining the final timescale of relaxation in
both cases. δ in both systems is fixed by matching the available computer simulation data
on two different transport properties, also obtained from two different approaches [23, 25].
In figure 7 the dynamic variation of the mean square displacement 〈r2(t)〉 for this LJ system
is shown. The plateau region is indicative of the restricted motion of the tagged particle
illustrating the ‘cage effect’. The arrow on this curve indicates the timescale where the peak
in the α2(t) appears in figure 6, after which the α2(t) starts decreasing. The tagged particle
motion becomes purely diffusive when finally the α2(t) vanishes in the very long-time limit,
correspondingly the 〈r2(t)〉 shows a linear variation with time in those timescales. In figure 8
we illustrate the variation of the probability 4πr2Gs(r, t) with distance r at time tp2. Here also
we compare for the LJ and HS system the non-Gaussian nature of the van Hove self-correlation
function with the corresponding Gaussian function G0

s (r, t), shown as the dot dashed curve
for both the LJ system (main figure) and the HS system (inset). The width of the probability
distribution is larger in the case of the LJ system as compared with that of the HS system. This
is mainly as a result of the much larger value of tp2 for the LJ case. This results in a widening of
the probability distribution curve, an effect which is also reflected in the corresponding larger
value of the mean square displacement. The fraction of ‘mobile particles’ is also found to be
similar in both cases.

4. Discussion

Different aspects of tagged particle dynamics are studied here in the self-consistent MCT
model. This work demonstrates the role of the interaction potential in determining the nature
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Figure 8. 4πr2Gs(r, t) versus r∗ = r/σ for an LJ liquid at T ∗ = 0.723, n∗ = 0.999 at time tp2.
The corresponding HS result is shown as the inset at density n∗ = 1.05. The dot dashed curves are
the corresponding Gaussian distribution function G0

s (r, t).

of dynamic relaxation in dense liquid states. The non-Gaussian parameter α2(t) quantifies the
effect of correlated dynamics over different timescales. In the HS systems it has been found
using the self-consistent MCT [7] that the α2(t) shows a double-peaked structure, the first peak
occurring over the shorter timescales in the β relaxation regime and the second peak in the
larger α relaxation timescales. Such a two-peaked structure of α2(t) has also been observed in
computer simulation studies of charged colloidal systems [4] and soft-sphere alloys [3]. We
have found here that the strength of the shorter-time peak decreases considerably in the case
of an LJ liquid as compared with the other two systems with purely repulsive interactions.
The longer-time peak shows almost the same peak height in the three cases. The HS fluid,
however, shows the maximum heterogeneity. In the extended MCT calculation, the timescale of
the second peak is determined by the parameter δ that has been fixed here using the computer
simulation models. The difference in the shorter-time peaks in α2(t) is indicative of the
structural differences over small length scales.

The time variation of the velocity autocorrelation function provides a direct means of
studying tagged particle motion. By evaluating this, we directly probe those features of
dynamical behaviour that are most sensitive to the details of interactions. These are particularly
relevant over the shorter timescales and the qualitative differences between the nature of the
dynamic variation of the α2(t) in this time range reflects these facts. The distinct oscillatory
character of the ψv(t) for the HS system as compared with the almost monotonic loss of the
negative correlation in the LJ system depicts the different relaxation mechanisms prevailing
in the two systems. The maximum negative value of ψv(t) corresponds to the HS system.
However, the LJ system shows the largest overall negative area under the curve. This shows
that the corresponding diffusion (obtained as the time integral of ψv(t)) is slower for the LJ
system. Thus this work shows on the basis of standard MCT model how the static structure
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of the system is directly responsible for the type of dynamical heterogeneity that marks the
system over different timescales.
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